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�Till now we studied regression models for dichotomous response variables;

however, many discrete response variables have three or more 
categories

�Examples ?

An Interesting example would be to model student’s intended career where 
the possibility can consist of any number of career (say 20)

Possible explanatory variables include gender, achievement test scores, and 
other variables in the data set.



Multinomial vs. Binary logistic regression 

Many of the concepts used in binary logistic regression, such as the 
interpretation of parameters in terms of odds ratios and modeling probabilities, 
carry over to multi-category logistic regression models.

However, a major modifications are needed to deal with multiple categories
of the response variable

�One difference is that with three or more levels of the response variable, there 
are multiple ways to dichotomize the response variable.

�If J equals the number of categories of the response variable,  then J(J –1)/2 
different ways exist to dichotomize the categories.
For example let there be 3 categories A,B and C the dichotomized pairs would be 
AB, AC and BC 



�A second modification to extend binary logistic regression to the polytomous 
case is the
need for a more complex distribution for the response variable

In the binary case, the distribution of the response is assumed to be binomial;
however, with multi category responses, the natural choice is the multinomial 
distribution,

How the response variable is dichotomized depends on

on the nature of the variable – If there is a baseline or control category, then 
the
analysis could focus on comparing each of the other categories to the baseline.



Odds Ratio 

For a binary response variable, there is only one kind of odds that
we may consider

 

For a multi-category response variable with J > 2 categories and category 
probabilities(π

1
,π

2
,……,π

j
); we may consider various kinds of odds, though 

some of them are more interpretable than others: 

�odds between two categories: πi/πj
�odds between a group of categories vs another group of

Categories



Odds Example for multi nominal :

E.g., if Y = source of meat (in a broad sense) with 5 categories
beef, pork, chicken, turkey, fish
We may consider the odds of

�beef vs. chicken: π
beef

/π
chicken

�red meat vs. white meat:  

�red meat vs. poultry: 



Odds for ordinal variables

If Y is ordinal with ordered categories:
1<2<3…..<J

we may consider the odds of Y ≤ J:

e.g., Y = political ideology, with 5 levels
very liberal < slightly liberal < moderate < slightly conservative < very conservative



Multi Nominal Logistic Regression

Baseline Model : 

�Consider a high school program types data. There are three possible program 
types: academic, general, and vocational.
 Let P(Yi = academic),
P(Yi = general), 
and P(Yi = vocational) be the probabilities of each of the program types for 
individual I

�There is no natural or pre mentioned baseline or reference, so lets consider 
general program as our reference.

�Dichotomizing the categories we can make 3 pairs ( General Academic, General 
Vocational and Academic Vocational)

�only two of the three possible pairs of program types are needed because the 
third can be found by taking the product of the other two. 



�Choosing the general program as the reference, the odds of academic versus 
general and the odds of vocational versus general equal

�The third odds, academic versus vocational, equals the product of these two 
odds



�More generally, let J equal the number of categories or levels of the response 
variable. Of the J(J – 1)/2 possible pairs of categories, only (J – 1) of them are 
needed.

�If the same category is used in the denominator of the (J – 1) odds, and all other 
possible odds can be formed from this set



As a model for Odds

�Continuing our example, where the general program is chosen as the baseline 
category, consider the model containing  a single explanatory variable, the mean 
of five achievement test scores for each student (i.e., math, science, reading, 
writing, and civics).

�The baseline model is simply two binary logistic regression models applied to 
each pair of program types; that is,

where P(Yi = academic|xi), P(Yi = general|xi),
and P(Yi = vocational|xi) are the probabilities
for each program type given mean
achievement test score xi for student i, the
αjs are intercepts, and the βjs are regression
coefficients.



�The odds of academic versus vocational are found by taking the ratio of :

where α3 = (α1 − α2) and β3 = (β1 − β2).

�For generality, let j = 1, . . . , J represent categories of the response variable. The 
probability that individual i is in category j given a value of xi on the 
explanatory variable is represented by P(Yi = j|xi)



�When fitting the baseline model to data, the binary logistic regressions for the (J – 1) odds 
must be estimated simultaneously to ensure that intercepts and coefficients for all other 
odds equal the differences of the corresponding intercepts and coefficients 
(e.g., α3 = (α1 − α2) and β3 = (β1 − β2)

�To demonstrate this, three separate binary logistic regression models were fit to the High 
School and Beyond data, as well as the baseline regression model, which simultaneously 
estimates the models for all the odds. The estimated parameters and their standard 
errors are reported in the Table



�Although the parameters for the separate and simultaneous cases are quite 
similar, the logical relationships between the parameters when the models are fit 
separately are not met (e.g., βˆ1− βˆ2= 0.1133 + 0.0163 = 0.1746 ≠ 0.1618);
however, the relationships hold for simultaneous estimation (e.g., βˆ1 − βˆ 2 = 
0.1099 + 0.0599 = 0.1698).

�A second advantage of simultaneous estimation is that it is a more efficient use of 
the data, which in turn leads to more powerful statistical hypothesis tests and 
more precise estimates of parameters. Notice that the parameter estimates in 
Table from the baseline model have smaller standard errors than those in the 
estimation of separate regressions.



Interpreting the regression coefficients 

�Using the parameter estimates of the baseline model (column 5 of Table), the 
estimated odds that a student is from an academic program versus a general 
program given achievement score x equals

and the estimated odds of an academic versus a general program for a student 
with achievement score x + 1 equals



�The ratio of these two odds :

�This odds ratio is interpreted as follows: For a one-unit increase in 
achievement, the odds of a student attending an academic versus a general
program are 1.12 times larger.

 



�For example, the odds of a student with x = 50 attending an academic program 
versus a general one is 1.12 times the odds for a student with x = 49.

�Given the scale of the achievement variable (i.e., mean(x) = 51.99, s = 8.09, min = 
32.94, and max = 70.00), it may be advantageous to report the odds ratio for an 
increase of one standard deviation of the explanatory variable rather than a 
one-unit increase.

�Generally, speaking, e(βc) where c is a constant, equals the odds ratio for an 
increase of c units

�For example, for an increase of one standard deviation in mean achievement, the 
odds ratio for academic versus general equals exp(0.1099(8.09)) = 2.42. Likewise, 
for a one standard deviation increase in achievement, the odds of an academic 
versus a vocational program are exp(0.1698(8.09)) = 3.95 times larger, but the odds 
of a vocational program versus a general program are only exp(–0.0599(8.09)) 
=0.62 times as large.



As a Model of Probabilities 

�Probabilities are generally a more intuitively understood concept than odds and 
odds ratios

�The model for probabilities is :

where j = 1, . . . , J.



The estimated probabilities are plotted in Figure :

The baseline model will always have one curve that monotonically decreases (e.g.,
P(Yi = vocational|xi)) and one that monotonically increases (e.g., P(Yi = academic|xi)). 
All others will increase and at some point start to decrease (e.g., P(Yi = general|xi)). 
At any point along the horizontal axis, the sum of the three probabilities equals 1.



What to do when there are multiple independent 
variables ?



Multiple Independent variable model 

�Models with multiple explanatory variables are illustrated here by adding to our 
model a nominal (i.e.,whether the school a student attends is public or private) 
and an ordinal variable (i.e., socioeconomic status reported as low, middle, or 
high).

�Discrete variables are added using either dummy or effect coding. For example, 
school type could be coded either as a dummy variable (Equation 11a) or as an 
effect code (Equation 11b



�The model presented and developed here has 3 independent variable 
achievement, school type, and socioeconomic status (SES)

� The effects codes used to add SES, which has three levels, to the model are as 
follows:



�Defining j = 1 for academic, j = 2 for vocational, and j = 3 = J for general program, 
the first model with multiple explanatory variables examined here is

�The same model expressed in terms of probabilities is 





�The interpretation in terms of odds ratios is the same as binary logistic 
regression

�Using the parameters reported in Table 26.2, for a one unit increase in mean 
achievement, the odds of an academic versus a general program are 1.10 times 
larger, and for a one standard deviation increase, the odds are exp(0.10(0.809)) 
= 2.25 times larger.



�With ordinal explanatory variables such as SES, one way to use the ordinal 
information is by assigning scores or numbers to the categories and treating the 
variables as numerical variables in the model

�Often, equally spaced integers are used, which amounts to putting equality  
restrictions on the βs for the variable. In our example, suppose we assign 1 to 
low SES, 2 to middle SES, and 3 to high SES and refit the model.

�Now SES can be denoted using one variable only 

�Placing the restrictions on the βs for ordinal variables is often a good way to 
reduce the complexity of a model. For example, the estimated odds ratio of 
academic versus general for middle versus low SES equals e^(βˆ 13(2−1)) = e^(βˆ 
13) = 1.70, which is the same as the odds ratio of high versus middle SES, 
exp(βˆ13(3−2)) = 1.70
That is for two adjacent levels the odds ratio is the same and can be easily found 
out (refer table in the next slide for data)





But…
�In our example, putting in equally spaced scores for SES is not warranted and is 

misleading

�The order of the SES levels for the odds of academic (versus general) schools is in 
the expected order (i.e., the odds of an academic program are larger the higher 
the student’s SES level) (Table 26.2)

�On the other hand, the parameter estimates of SES for odds of vocational schools 
do not follow the natural ordering of low to high, are relatively close together, and 
are not significantly different from zero.

�The numerical scores could be used for the SES effect on the odds of academic 
programs but the scores are inappropriate for the odds of vocational programs. 
There may not even be a difference between vocational and general programs in 
terms of SES. Furthermore, there may not be a difference between students who 
attended vocational and general programs with respect to school type


