Limited Dependent Variable

Aadi Dev S

Department of Economics
Deva Matha College, Kuravilangad

DTill now we studied regression models for dichotomous response variables; however, many discrete response variables have three or more categories

DExamples?

An Interesting example would be to model student's intended career where the possibility can consist of any number of career (say 20)

Possible explanatory variables include gender, achievement test scores, and other variables in the data set.

Multinomial vs. Binary logistic regression

Many of the concepts used in binary logistic regression, such as the interpretation of parameters in terms of odds ratios and modeling probabilities, carry over to multi-category logistic regression models.

However, a major modifications are needed to deal with multiple categories of the response variable

DOne difference is that with three or more levels of the response variable, there are multiple ways to dichotomize the response variable.

If J equals the number of categories of the response variable, then $J(J-1) / 2$ different ways exist to dichotomize the categories.
For example let there be 3 categories A, B and C the dichotomized pairs would be $A B, A C$ and $B C$

पA second modification to extend binary logistic regression to the polytomous case is the
need for a more complex distribution for the response variable

In the binary case, the distribution of the response is assumed to be binomial; however, with multi category responses, the natural choice is the multinomial distribution,

How the response variable is dichotomized depends on
on the nature of the variable - If there is a baseline or control category, then the analysis could focus on comparing each of the other categories to the baseline.

Odds Ratio

For a binary response variable, there is only one kind of odds that we may consider

```
    \pi
    1-\pi
```

For a multi-category response variable with $\mathrm{J}>\mathbf{2}$ categories and category probabilities $\left(\pi_{1}, \Pi_{2}, \ldots \ldots, \pi_{j}\right)$; we may consider various kinds of odds, though some of them are more interpretable than others:
lodds between two categories: $\mathrm{\pi i} / \pi \mathrm{j}$
lodds between a group of categories vs another group of Categories

Odds Example for multi nominal :
E.g., if $\mathrm{Y}=$ source of meat (in a broad sense) with 5 categories beef, pork, chicken, turkey, fish We may consider the odds of

Ibeef vs. chicken: $\Pi_{\text {beef }} / \pi_{\text {chicken }}$
Ired meat vs. white meat:

$$
\pi_{\text {beef }}+\pi_{\text {pork }}
$$

$\pi_{\text {chicken }}+\pi_{\text {turkey }}+\pi_{\text {fish }}$

Ired meat vs. poultry:

$\pi_{\text {beef }}+\pi_{\text {pork }}$

$\pi_{\text {chicken }}+\pi_{\text {turkey }}$

Odds for ordinal variables
If Y is ordinal with ordered categories:
1<2<3.....<J
we may consider the odds of $\mathrm{Y} \leq \mathrm{J}$:
$\frac{P(Y \leq j)}{P(Y>j)}=\frac{\pi_{1}+\pi_{2}+\cdots+\pi_{j}}{\pi_{j+1}+\cdots+\pi_{j}}$
e.g., $\mathrm{Y}=$ political ideology, with 5 levels very liberal < slightly liberal < moderate < slightly conservative < very conservative
we may consider the odds

$$
\frac{P(\text { very or slightly liberal" })}{P(\text { moderate or conservative })}=\frac{\pi_{\text {vlib }}+\pi_{\text {slib }}}{\pi_{\text {mod }}+\pi_{\text {scon }}+\pi_{\text {vcon }}}
$$

Multi Nominal Logistic Regression

Baseline Model :

IConsider a high school program types data. There are three possible program types: academic, general, and vocational.
Let $P(Y i=$ academic),
P(Yi = general),
and $P(Y i=$ vocational) be the probabilities of each of the program types for individual I

JThere is no natural or pre mentioned baseline or reference, so lets consider general program as our reference.

IDichotomizing the categories we can make 3 pairs (General Academic, General Vocational and Academic Vocational)

Jonly two of the three possible pairs of program types are needed because the third can be found by taking the product of the other two.

Choosing the general program as the reference, the odds of academic versus general and the odds of vocational versus general equal

$$
\begin{aligned}
& \frac{P\left(Y_{i}=\text { academic }\right)}{P\left(Y_{i}=\text { general }\right)} \\
& \frac{P\left(Y_{i}=\text { vocational }\right)}{P\left(Y_{i}=\text { general }\right)}
\end{aligned}
$$

IThe third odds, academic versus vocational, equals the product of these two odds

$$
\begin{gathered}
\frac{P\left(Y_{i}=\text { academic }\right)}{P\left(Y_{i}=\text { vocational }\right)} \\
=\frac{P\left(Y_{i}=\text { academic }\right) / P\left(Y_{i}=\text { general }\right)}{P\left(Y_{i}=\text { vocational }\right) / P\left(Y_{i}=\text { general }\right)} .
\end{gathered}
$$

More generally, let J equal the number of categories or levels of the response variable. Of the $J(J-1) / 2$ possible pairs of categories, only $(J-1)$ of them are needed.

IIf the same category is used in the denominator of the $(J-1)$ odds, and all other possible odds can be formed from this set

As a model for Odds

■Continuing our example, where the general program is chosen as the baseline category, consider the model containing a single explanatory variable, the mean of five achievement test scores for each student (i.e., math, science, reading, writing, and civics).

DThe baseline model is simply two binary logistic regression models applied to each pair of program types; that is,

$$
\begin{aligned}
& \frac{P(Y i=\text { academic } \mid x i)}{P(Y i=\text { general } \mid x i)}=e^{[\alpha 1+\beta 1 x i]} \\
& \& \\
& \frac{P(Y i=\text { vocational } \mid x i)}{P(Y i=\text { general } \mid x i)}=e^{[\alpha 2+\beta 2 x i]}
\end{aligned}
$$

where $P(Y i=$ academic $/ x i), P(Y i=$ general $\mid x i)$, and $P(Y i=$ vocational $/ x i)$ are the probabilities for each program type given mean achievement test score xi for student i, the ajs are intercepts, and the β js are regression coefficients.

DThe odds of academic versus vocational are found by taking the ratio of :

$$
\begin{aligned}
\frac{P(Y i=\text { academic } \mid x i)}{P(Y i=\text { vocational } \mid x i)} & =\frac{e^{[\alpha 1+\beta 1 x i]}}{e^{[\alpha 2+\beta 2 x i]}} \\
& =e^{[(\alpha 1-\alpha 2)+(\beta 1-\beta 2) x i} \\
& =e^{[\alpha 3+\beta 3 x i]}
\end{aligned}
$$

where $\alpha 3=(\alpha 1-\alpha 2)$ and $\beta 3=(\beta 1-\beta 2)$.

DFor generality, let $j=1, \ldots, J$ represent categories of the response variable. The probability that individual i is in category j given a value of $x i$ on the explanatory variable is represented by $P(Y i=j \mid x i)$

पWhen fitting the baseline model to data, the binary logistic regressions for the ($J-1$) odds must be estimated simultaneously to ensure that intercepts and coefficients for all other odds equal the differences of the corresponding intercepts and coefficients (e.g., $\alpha 3=(\alpha 1-\alpha 2)$ and $\beta 3=(\beta 1-\beta 2)$

पTo demonstrate this, three separate binary logistic regression models were fit to the High School and Beyond data, as well as the baseline regression model, which simultaneously estimates the models for all the odds. The estimated parameters and their standard errors are reported in the Table

Table 26.1 Estimated Parameters (and Standard Errors) From Separate Binary Logistic Regressions and From the Simultaneously Estimated Baseline Model

		Separate Models			Baseline Model	
	Odds			Estimate	$S E$	
Estimate	$S E$					
$P\left(Y_{i}=\right.$ academic $\left.\mid x_{i}\right)$	α_{1}	-5.2159	0.8139		-5.0391	0.7835
$P\left(Y_{i}=\right.$ general $\left.\mid x_{i}\right)$	β_{1}	0.1133	0.0156		0.1099	0.0150
$P\left(Y_{i}=\right.$ vocational $\left.\mid x_{i}\right)$	α_{2}	2.9651	0.8342		2.8996	0.8156
$P\left(Y_{i}=\right.$ general $\left.\mid x_{i}\right)$	β_{2}	-0.0613	0.0172		-0.0599	0.0168
$\frac{P\left(Y_{i}=\text { academic } \mid x_{i}\right)}{P\left(Y_{i}=\text { vocational } \mid x_{i}\right)}$	α_{3}	-7.5331	0.8572		-7.9387	0.8439

Although the parameters for the separate and simultaneous cases are quite similar, the logical relationships between the parameters when the models are fit separately are not met (e.g., $\beta^{\wedge} 1-\beta^{\wedge} 2=0.1133+0.0163=0.1746 \neq 0.1618$); however, the relationships hold for simultaneous estimation (e.g., $\beta^{\wedge} 1-\beta^{\wedge} 2=$ $0.1099+0.0599=0.1698$).

A second advantage of simultaneous estimation is that it is a more efficient use of the data, which in turn leads to more powerful statistical hypothesis tests and more precise estimates of parameters. Notice that the parameter estimates in Table from the baseline model have smaller standard errors than those in the estimation of separate regressions.

Using the parameter estimates of the baseline model (column 5 of Table), the estimated odds that a student is from an academic program versus a general program given achievement score x equals

$\frac{P^{\wedge}(Y i=\text { academic } \mid x)}{P^{\wedge}(Y i}=e^{[-5.0391+0.1099 x]}$ $P^{\wedge}(Y i=$ general $\mid x)$

and the estimated odds of an academic versus a general program for a student with achievement score $x+1$ equals

$$
\frac{P^{\wedge}(Y i=\text { academic } \mid x+1)}{P^{\wedge}(Y i=\text { general } \mid x+1)}=e^{[-5.0391+0.1099(x+1)]}
$$

$\hat{P}\left(Y_{i}=\right.$ academic $\left.\mid x+1\right) \hat{P}\left(Y_{i}=\right.$ academic $\left.\mid x\right)$

$$
\hat{P}\left(Y_{i}=\text { general } \mid x+1\right) \hat{P}\left(Y_{i}=\operatorname{general} \mid x\right)
$$

$$
\begin{aligned}
& =\frac{\exp [-5.0391+0.1099(x+1)]}{\exp [-5.0391+0.1099 x]} \\
& =\exp (0.1099)=1.12
\end{aligned}
$$

DThis odds ratio is interpreted as follows: For a one-unit increase in achievement, the odds of a student attending an academic versus a general program are 1.12 times larger.

IFor example, the odds of a student with $x=50$ attending an academic program versus a general one is 1.12 times the odds for a student with $x=49$.
]Given the scale of the achievement variable (i.e., mean $(x)=51.99, s=8.09, \min =$ 32.94, and max = 70.00), it may be advantageous to report the odds ratio for an increase of one standard deviation of the explanatory variable rather than a one-unit increase.

1Generally, speaking, $\mathrm{e}^{(\beta \mathrm{Bc})}$ where c is a constant, equals the odds ratio for an increase of c units

IFor example, for an increase of one standard deviation in mean achievement, the odds ratio for academic versus general equals $\exp (0.1099(8.09))=2.42$. Likewise, for a one standard deviation increase in achievement, the odds of an academic versus a vocational program are $\exp (0.1698(8.09))=3.95$ times larger, but the odds of a vocational program versus a general program are only $\exp (-0.0599(8.09))$ $=0.62$ times as large.

As a Model of Probabilities

Probabilities are generally a more intuitively understood concept than odds and odds ratios

IThe model for probabilities is :

where $j=1, \ldots$, ,.

The estimated probabilities are plotted in Figure :

The baseline model will always have one curve that monotonically decreases (e.g., $P\left(Y_{i}=\right.$ vocational $\left.\mid x i\right)$) and one that monotonically increases (e.g., $P\left(Y_{i}=\right.$ academic $\left./ x i\right)$). All others will increase and at some point start to decrease (e.g., $P(Y i=$ general|xi)). At any point along the horizontal axis, the sum of the three probabilities equals 1.

What to do when there are multiple independent variables ?

Multiple Independent variable model

[Models with multiple explanatory variables are illustrated here by adding to our model a nominal (i.e.,whether the school a student attends is public or private) and an ordinal variable (i.e., socioeconomic status reported as low, middle, or high).
—Discrete variables are added using either dummy or effect coding. For example, school type could be coded either as a dummy variable (Equation 11a) or as an effect code (Equation 11b

IThe model presented and developed here has 3 independent variable achievement, school type, and socioeconomic status (SES)

The effects codes used to add SES, which has three levels, to the model are as follows:

DDefining $j=1$ for academic, $j=2$ for vocational, and $j=3=J$ for general program, the first model with multiple explanatory variables examined here is

$$
\frac{P(Y i=j \mid x i, p i, s 1 i, s 2 i)}{P(Y i=J \mid x i, p i, s 1 i, s 2 i)}=e^{[\alpha j+\beta j i x i+\beta j 2 p i+\beta j 3 s 1 i+\beta j 4 s 2 i]}
$$

DThe same model expressed in terms of probabilities is

$$
\overline{\sum_{h=1}^{J} e^{[\alpha h+\beta h 1 x i+\beta h 2 p i+\beta h 2 s 1 i+\beta h 3 s 2 i]}}
$$

Table 26.2 Estimated Parameters, Standard Errors, and Wald Test Statistics for All Main Effects Model

Odds	Effect	Parameter	Estimate	SE	$\exp (\beta)$	Wald	p Value
$P\left(Y_{i}=\right.$ academic $)$	Intercept	α_{1}	-3.92	0.83		22.06	$<.01$
$P\left(Y_{i}=\right.$ general $)$	Achievement	β_{11}	0.10	0.02	1.10	37.80	$<.01$
	School type (public)	β_{12}	-0.61	0.18	0.54	12.01	$<.01$
	School type (private)	$-\beta_{12}$	0.61		1.84		
	SES (low)	β_{13}	-0.46	0.18	0.63	6.83	.01
	SES (middle)	β_{14}	-0.07	0.15	0.94	0.19	.66
	SES (high)	$-\left(\beta_{13}+\beta_{14}\right)$	0.53		1.70		
$P\left(Y_{i}=\right.$ vocational $)$	Intercept	α_{2}	2.88	0.88		10.61	$<.01$
$P\left(Y_{i}=\right.$ general $)$	Achievement	β_{13}	-0.06	0.02	0.94	13.28	$<.01$
	School type (public)	β_{22}	0.13	0.24	1.94	0.27	.60
	School type (private)	$-\beta_{22}$	-0.13		0.88		
	SES (low)	β_{23}	-0.23	0.19	0.80	1.45	.23
	SES (middle)	β_{24}	0.24	0.17	1.28	2.16	.14
	SES (high)	$-\left(\beta_{23}+\beta_{24}\right)$	-0.02		0.98		

NOTE: SES is treated as a nominal variable.

DThe interpretation in terms of odds ratios is the same as binary logistic regression

ZUsing the parameters reported in Table 26.2, for a one unit increase in mean achievement, the odds of an academic versus a general program are 1.10 times larger, and for a one standard deviation increase, the odds are $\exp (0.10(0.809))$ $=2.25$ times larger.

IWith ordinal explanatory variables such as SES, one way to use the ordinal information is by assigning scores or numbers to the categories and treating the variables as numerical variables in the model

1Often, equally spaced integers are used, which amounts to putting equality restrictions on the β s for the variable. In our example, suppose we assign 1 to low SES, 2 to middle SES, and 3 to high SES and refit the model.

JNow SES can be denoted using one variable only
1Placing the restrictions on the β s for ordinal variables is often a good way to reduce the complexity of a model. For example, the estimated odds ratio of academic versus general for middle versus low SES equals $\mathrm{e}^{\wedge}\left(\beta^{\wedge} 13(2-1)\right)=\mathrm{e}^{\wedge}\left(\beta^{\wedge}\right.$ 13) $=1.70$, which is the same as the odds ratio of high versus middle SES, $\exp \left(\beta^{\wedge} 13(3-2)\right)=1.70$
That is for two adjacent levels the odds ratio is the same and can be easily found out (refer table in the next slide for data)

Table 26.3 Estimated Parameters, Standard Errors, and Wald Statistics for All Main Effects Model

Odds	Effect	Parameter	Estimate	$S E$	$\exp (\beta)$	Wald	p Value
$P\left(Y_{i}=\right.$ academic $)$	Intercept	α_{1}	-4.97	0.83	-	35.73	$<.01$
$P\left(Y_{i}=\right.$ general $)$	Achievement	β_{11}	0.10	0.02	1.10	37.48	$<.01$
	School type	β_{12}	-0.61	0.18	0.55	11.80	$<.01$
	SES	β_{13}	0.53	0.18	1.70	11.80	$<.01$
$P\left(Y_{i}=\right.$ vocational $)$	Intercept	α_{2}	2.57	0.87	-	8.78	$<.01$
$P\left(Y_{i}=\right.$ general $)$	Achievement	β_{13}	-0.06	0.02	0.95	12.96	$<.01$
	School type	β_{22}	0.12	0.24	1.13	0.26	.61
	SES	β_{23}	0.17	0.19	1.19	0.92	.34

NOTE: SES is treated as a numerical variable with scores of $1=$ low, $2=$ middle, and $3=$ high.

But...

In our example, putting in equally spaced scores for SES is not warranted and is misleading

IThe order of the SES levels for the odds of academic (versus general) schools is in the expected order (i.e., the odds of an academic program are larger the higher the student's SES level) (Table 26.2)

1On the other hand, the parameter estimates of SES for odds of vocational schools do not follow the natural ordering of low to high, are relatively close together, and are not significantly different from zero.

IThe numerical scores could be used for the SES effect on the odds of academic programs but the scores are inappropriate for the odds of vocational programs. There may not even be a difference between vocational and general programs in terms of SES. Furthermore, there may not be a difference between students who attended vocational and general programs with respect to school type

